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A recently developed energetic homogenization method [Muhlestein, J. Acoust. Soc. Am.
5, 3584-3593 (2020)] is used to estimate the apparent material properties of a simple
porous material with varying cross-sectional areas. Expressions for the apparent mass
density, compressibility, and kinematic viscosity are given. As a demonstration, a simple
duct with identical expansion chambers is briefly considered.

1 Introduction

This paper is concerned with the homogenization of a porous material that may be modeled as a
statistically identical network of one-dimensional ducts with varying cross-sectional areas. For this
paper the ducts are considered to be acoustically wide, such that boundary layers may be assumed to
be thin compared to the duct width. Using a recently developed energetic homogenization technique,
described below in Sec. 2, the impact of the varying cross-sectional area on the apparent mass density,
bulk modulus, and kinematic viscosity may be calculated. A demonstration of the technique using a
simple expansion chamber is given in Sec. 3.

2 Energetic Homogenization

One approach to homogenization is to average the weak form of the dynamic equations, known
as Hamilton’s principle, by assuming that the acoustic pressure and volume velocity are constants
throughout a representative volume element [1]. Hamilton’s principle requires knowledge of the total
kinetic and potential energies, as well as any constraints and external forces (such as from friction).
For a one-dimensional duct with variable cross-section we may write the kinetic and potential energies,
respectively, as
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where the domain x ∈ (0, L) is the extent of the duct of interest, S(x) is the cross-sectional area, ρ0 is
the fluid mass density, β0 is the fluid compressibility (inverse bulk modulus), q is the volume velocity,
and p is the acoustic pressure. The acoustical fields are assumed to be functions of position x and
time t. The continuity equation may be imposed via the constraint equation C = 0 and boundary
layer losses may be incorporated as an external force density F [2], where
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where ν0 is the kinematic viscosity that depends only on the propagation fluid, C(x) is the duct perime-

ter at position x, and ∂1/2/∂t1/2 is the half time derivative operator (see, e.g., Ref. [3]). Combining
these expressions, we may write Hamilton’s principle as
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where t0 and t1 are arbitrary initial and final times, δ is the variational operator, µ is a Lagrange mul-
tiplier function for the constraint equation, and u is the volume displacement (such that q = ∂u/∂t).
Note that in this form of Hamilton’s principle the only acoustical field quantities that appear are those
that are continuous across interfaces (i.e., the acoustic pressure and various time derivatives or inte-
grals of the volume displacement). Then, following Muhlestein [1], we may conclude the macroscopic
acoustical quantities behave as though the duct had constant (and chosen arbitrarily) cross-sectional



L

d

S2S1 S1S0

Figure 1: Schematic of an example duct with a variable cross-sectional area, as well as the reference
cross-sectional area S0.

area S0 and perimeter C0, and the propagation fluid had effective mass density, compressibility, and
boundary drag coefficient respectively given by
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From these quantities one may derive an effective wavenumber, acoustic impedance, and absorption
values.
While this presentation is limited to considering boundary layer losses in linear media, bulk thermovis-
cous losses and nonlinear phenomena may be readily incorporated (see Ref. [1]). Additional geometric
features (e.g., dead-end pores) or physical phenomena may also be accounted for using this formalism.

3 Demonstration

As a demonstration of the homogenization method, consider the case of an air-filled duct with simple
cylindrical expansion chambers (see Fig. 1). Let the reference cross-sectional area be S0, the cross-
sectional area of the narrow tubes be S1, and the cross-sectional area of the expansion chambers be
S2, the length of the element is L and the length of the expansion chamber is d. Using Eqs. (4) we
may then write
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where Ci is the circumference associated with Si. Since the porosity may be written as φ = [S1(L −
d) + S2d]/L, the structure factor may be written as
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in agreement with Neithalath, et al. [4].
It is possible that more extreme effective properties could be obtained by incorporating more compli-
cated geometries, such as dead-end resonators or membranes.
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